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Fatigue crack growth at a high stress level is considered using the model of a thin plastic zone taking microdamage accumulation 
in this zone into account. It is assumed that a crack grows when the stability condition of the "cracked body-loading" system is 
violated. "['nis condition is treated in the framework of the principle of virtual work for systems with unilateral constraints. The 
damage accumulation process in the plastic zone and on its prolongation is assumed to depend on the opening stress range. The 
process of crack growth is studied by numerical simulation. Diagrams of the growth of fatigue cracks are obtained that describe 
all three stages of fatigue damage including the anomalous behaviour of short cracks and the accelerated growth near the final 
fracture. It is shown that the proposed theory predicts that the slope of the middle part of the diagram is close to two when the 
parameters of microdamage accumulation vary over a wide range. 

The growth of fatigue cracks can be regarded as a result of a combination of two interacting phenomena: 
the transition of the "cracked body with load" system from one stable state into a neighbouring stable 
state, and the process of microdamage accumulation which occurs both in the tip zone and in the far 
field. From this point of view the mechanical model of the fatigue crack growth is based on a synthesis 
of fracture micro- and macromeehanics [1, 2]. If the level of cyclic loading is sufficiently high, the fatigue 
crack growth is accompanied by plastic deformation. The growth rate then increases considerably, and 
the number of cycles until the final fracture occurs is reduced. In this case we speak of low-cycle fatigue 
(unlike the classical high-cycle fatigue). To describe the growth of classical fatigue cracks it is suffeient 
to combine linear fracture mechanics with one of the models of damage accumulation. In the case of 
low-cycle fatigue, to describe the phenomenon at the macroscopic level one needs to use one of the 
models of non-linear fracture mechanics [3--6]. In this paper we use the Leonov-Panasyuk-Dugdale 
model of a thin plastic zone. 

1. Macroscopic cracks in common engineering materials are usually irreversible. This enables the 
"cracked body-load" system to be treated as a mechanical system with unilateral ideal constraints on 
the parameters which represent the dimensions of the cracks. It is natural to treat the behaviour of 
such systems using the principle of virtual work for systems with unilateral constraints [7]. It is then 
necessary to distinguish the usual generalized Lagrange coordinates, which describe the field of 
displacements in the body with fixed cracks, and the crack parameters, called generalized Griffith 
coordinates in [1]. Henceforth, for brevity, we will use the terms L-coordinates and G-coordinates, 
respectively. 

We will assume that the number of G-coordinates a l , . . . ,  am is finite, and their variations, compatible 
with the constraints, satisfy the inequalities 

Sail> O, j =  1 ..... m (1.1) 

Confining ourselves to quasistatic problems, we will write the condition of equilibrium of the "cracked 
body-load" system in the form 

8A =~LA + $c,A ~< 0 (1.2) 

where the work 8LA is performed on variations of the L-coordinates while the work 8c, A is performed 
on variations of the G-coordinates. By definition [1, 2], all the adjacent positions must satisfy the 
condition 8LA -- 0 so that relation (1.2) reduces to the following 
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/Sc, A ~< 0 (1.3) 

We will call the state of the "cracked body-load" system a subequilibrium state [1] if 5c, A < 0 for any 
permissible 8a. > 0, and an equilibrium state if 5c, A = 0 for some of the variations 8aj > 0 and 5c, A < 

~/ . • . . . 

0 for the remaining vanatlons. The equilibnum states can be stable, unstable or neutral depending on 
the behaviour of the system in the neighbourhood of an equilibrium state. If at least one variation 8aj 
> 0 exists for which 5c, A > 0, the state is called a non-equilibrium state• It is obvious that this state is 
unstable. The corresponding theorems can be proved rigorously with certain limitations [8]• When m 
= 1 and for external potential forces this follows from energy considerations if we mean by variations 
in the dimensions of the crack ~ i  the actual increment da. 

In the case of cyclic loading it m necessary to take into account the dependence of the virtual work 
5c, A on the loading prehistory, the growth of cracks, and the accumulation of plastic deformation and 
microdamage. A fatigue crack does not propagate when 8c, A < 0 and grows continuously and 8c, A > 
0. 8o (So, A) < 0. The second sign of the variation denotes that second-order terms are taken into account 
in the neighbourhood of the equilibrium sta~e when conditions (1.1) are satisfied. The crack will grow 
intermittently if, at the instant when the equality 5c, A = 0 is achieved, the condition 8a (So, A) < 0 is 
not satisfied [9]. 

In order to formulate these conditions in terms of generalized forces we note that the work 8c, A is 
a linear form of the variation 8aj 

m 

5aA - y. (Gj - Fj )~aj (1.4) 
j=! 

Here G, are the active (moving) generalized forces, and Fj are the generalized resistance forces. 
• ~ • • . . . • • • 

The division of the generalized forces into two classes m fatrly arbitrary. As m usually done m fracture 
mechanics, we will relate the generalized resistance forces to the fracture work performed in the regions 
near the crack tips. Then, by linear fracture mechanics, the generalized forces Gj have the meaning of 
the strain energy release rates, while the generaliTed forces have the meaning of the corresponding critical 
values. Fatigue cracks do not grow when Gj < F, and begin to grow with respect to the generalized 
coordinate at, when the equality Gk = Fk is attained. In particular, ifm = 1, the conditions for continuous 
crack growth have the form 

G = F, dG/da < dF/da (1.5) 

where the subscripts have been omitted. 
When the system becomes unstable, an abrupt increment in the crack by Aa occurs, after which the 

state of the system again becomes stable (a subequilibrium state). The increment Aa can be obtained 
from energy considerations. Neglecting all energy losses, apart from that which is due to the fracture 
work, we arrive at the equation 

a + A a  a + A a  

I C(x)dx= I r(x)a  (1.6) 
a a 

The x coordinate is measured along the direction of the assumed crack propagation. 

2. A model of a thin plastic region was discussed in detail in [3-5]. We will consider the fundamental 
version of the model, namely, a plane opening mode crack in an unbounded plate subject to normal 
stresses o. .  We will denote the length of the crack by 2a and the length of the plastic zone by X, and 
we will direct the coordinate axes as shown in Fig. 1. The faces of the crack at Ix I < a are stress-free. 
In the section a < Ix I < a + X the normal stresses 6y(x) are, by definition, equal to the specified quantity 
o0, which is of the order of the yield stress of the material under tension and may be identical to it. 
Outside the plastic region, the thickness of which is assumed to be negligibly small, the material is linearly 
elastic with Young's modulus E. The solution of the mixed problem of the theory of elasticity reduces 
to the formula for the length X of the plastic zone and the crack tip opening 

~,=a(sec~- l ) ,  8= 8a°aln sect, ~= ~o** (2.1) 
nE 2o0 

Moreover, we will later need a formula for the normal displacement ~(x) when a < Ixl < a + ~, and 
the normal stress or(x ) when Ix I > a + ~,. These formulae may have different forms depending on the 
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Fig. 1. 

method by which they are obtained. Omitting the reference on they tx~ordinate, we will take the following 
expressions (b = a + ~,) 

g__~[ sin2(~-0) 
v(x)  = cosOln sin2(~+ 0 ) 

t~y(x) = f (a, b, x) 

+ cos ~ In (sin ~ + sin 0) 2 ] 
(sin ~ -  sin 0) 2 / 

x r.::-::] O--arc cos~-, f(a, b, x)= 2~O/t arc ctg[x~"~'~-a2 J 

To determine the active generalized force G we will use the relation 

(2.2) 

G 8a = 8c, Ae +Sc, Ai (2.3) 

where 8oAe and 8GAi are the virtual works of the external and internal forces, respectively, calculated 
over the whole volume, including the tip zone. Since the material is assumed to be elastic outside the 
tip zone, variation of G-coordinates generates variations of the strain field outside the tip zone, which 
satisfy the conditions imposed on the variations of L-coordinates. This means [10] that the limits of 
the integration region can be transferred directly to the boundary of the tip zone. Unlike the similar 
discussions in the case of the J-integral, however, it is necessary to take two facts into account here. 
First, when the dimensions of the crack vary, the length of the end zone (2.1) will also undergo a variation 
(Fig. 1). Second, the boundary of the region may contract only up to the beginning of the varied tip 
zone, i.e. it is necessary to take into account in the calculations the work in the section a + ~. < Ix I < 
a + 8X. Hence, relation (2.3) takes the form 

a+~. ~ ,  

G=2°08a  S "~dx (2.4) 
a Oa 

Substituting the expression for ~(x)from (2.2) we obtain 

8 ~ a  
G=  G0(ln cos~+~tg~), G o = r,E (2.5) 

The details of the calculations were presented in [3] in the context of determining the specific work 
of fracture in the model of a thin tip zone, i.e. the generalized resistance force F. Since, when the crack 
starts to grow, G = F, the fight-hand side of (2.5) is identical with the specific fracture work. 
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Note that the usual formula for the J-integral when choosing the contour of integration over the 
boundary of the tip zone has the form 

J=-2OoSa J _--dx 
o ~ x  

(2.6) 

The integral on the right-hand side is equal to 5/2. Substituting ~ from (2.1) here we obtain the well- 
known formula 

J = Go ha sec ~ (2.7) 

The results of calculations using Eqs (2.5) and (2.7) differ considerably particularly in the region of 
large o./o0. This is illustrated in Fig. 2, where curve 3 is drawn using Eq. (2.5) and curve 2 is drawn 
using Eq. (2.7). The difference between the right-hand sides of these formulas can be explained by their 
different origin: the generalized force G is obtained by considering the variation in the dimensions of 
the crack, whereas the J-integral corresponds to the "approach" of the body to a fixed crack. The product 
G 8a has the meaning of virtual work, whereas the product J ~a, in general, does not allow of this 
interpretation. However, if the material of the body is everywhere elastic (not necessarily linearly), we 
can replace 0/~a by -x3/ax and vice versa in (2.4) and (2.6). In the model of the plastic zone, due to 
variation of its dimensions 0/~a # --3/0x. For completeness, Fig. 2 shows a graph (curve 1) constructed 
from the formula of linear fracture mechanics J = 1to'alE. 

3. When calculating the generalized force one needs to take into account the inelastic nature of the 
deformation--the occurrence of residual stresses and strains, both ahead of the crack tip and behind 
this tip, cyclic hardening, and also the accumulation of microdamage in the tip zone and along its 
prolongation. Many factors are contradictory and do not always have an easily predictable effect. Thus, 
in addition to cyclic hardening, softening is also observed. Microdamage, accumulated ahead of a 
microscopic crack, reduces the specitie fracture work but may also have the opposite effect. 

We will now consider a simple analytical model, according to which the specific fracture work depends 
only on the opening at the crack tip ~/> 0 and a certain scalar microdamage measure ¥ ~ 0. Then 

r = r0f(8, ¥) (3.1) 

where F0 is the specific fracture work for a "narrow" crack, in the undamaged material, while the function 
f(5, ¥)  satisfies the conditions f(0, 0) = 1, ~f/05/-- 0, ~f/~¥ ~< 0. Under these conditions Eq. (3.1) enables 
one to describe the increase in the crack resistance due to plastic blunting of the crack and, to a certain 
extent, the effect of the prehistory. 

Thus, for a short-term overload, 8 increases, leading to an increase in the generalized force F and a 
delay in the crack growth. The introduction of a dependence on the measure ¥ enables the reduction 
in the crack resistance due to the microdamage accumulation to be treated. To describe the latter along 
the extension of the crack Ix I ~> a we will introduce the scalar measure c0(x, N) which takes values in 
the interval [0, 1]. Then, the value co = 0 corresponds to an undamaged material, while co = i corresponds 
to a completely damaged material. It is obvious that 

0.5 

G/Go 

j // 

0 0.S 
%/o0 

Fig. 2. 
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¥ (N) = to [a(N), N] (3.2) 

One of the simplest analytic representations for the right-hand side of (3.1) has the form 

F = F0[ 1 + ( ~ r )  1~] (1 - ~l~t) (3.3) 

This formula, in addition to the specific work F0 for the undamaged material, also contains three 
other parameters ~ ~, 8r (the last of these has the dimensions of length). When I] > 0, Eq. (3.3) describes 
the increase in the fracture toughness as the crack tip moves and as the stress level increases. Here 8 
is calculated from Eq. (2.1) by replacing o .  by the maximum nominal stress of the cycle o max. From 
the conditions, the crack propagates in they = 0 plane, i.e. without kinking and branching, while outside 
the plastic zone the material remains elastic with the constant modulus E. 

We will set up an equation for the microdamage measure 0~(x, N). Here the problem arises as to which 
factor controls the microdamage accumulation: a cyclic change in the stresses or a cyclic change in the 
strains. In the first case the equation can be taken in the form 

a~aN = [(Aoy - Aom)/ol]- (3.4) 

Here Ao** is the range of the tensile stresses when y = 0. The parameters of the material of > 0, 
om ~ 0, m >0 may depend on temperatures and other environmental conditions on the loading frequency, 
an  the form of the cycle and, in particolar, on the stress ratio R = O.nan/o.max. The introduction of the 
threshold value Aom enables the so-called crack-closure effect [11] to be introduced into consideration. 

In order to obtain the.tensile stress range Aoy it is sufficient to obtain the distribution of the tensile 
stresses for o mffit and o .  mm. When o .  = o .  max, Eq. (2.1) and the second formula of (2.2) give 

= ~'O o ,  a ~ < l x l ~  < a + ~. 
OYmaX !.f(a, b, x), I x l>a+L  

'] 
(3.5) 

When unloading occurs down to o../o m~, residual stresses occur which are obtained by summing the 
stresses (3.5) with the stress corresponding to the nominal value of O mm -- O ~  max and the limit stress 2o0. 
As a result, the stress range turns out to be 

= I2o0, a ~<lxl~ < a + L  w 
Aoy [2f(a ,  b~, x), Ix l>a+~p 

(3.6) 

   aI4e), ] 
where Ao.. is the range of the nominal stresses. 

Equations (3.5) and (3.6) are illustrated in Fig. 3. Ctt~e I corresponds to a stress o**/o max, curve 2 
corresponds to the residual stresses o../o mtn, while curve 3 corresponds to the range Aoy. In Fig. 4 the 
ratio of the dimensions of the "~ternal" plastic zone ~ to the dimensions k is plotted versus the stress 
range Ao** and the ratio R = omm/o max. 

We will take the following as an alternative model of the accumulation of microdamage 

(3.7) 

Here Aa) is the range of the relative normal displacement at the edge of the plastic zone, and 5f, Atth 
and m are parameters of the material, similar to the parameters from (3.4). 

All the displacements occur in Eq. (3.7) under the square root sign. This is done so that a low stress 
level, i.e. when O mm "~ O0, E q .  (3.7) can be used to describe classical (high-cycle) fatigue. In fact, for 
small values of o../o0 Eq. (2.1) and the second equation of (2.2) give displacements proportional to 
o2a, i.e. proportional to the square of the stress intensity factor AKI. Taking the square roots in (3.7) 
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we ensure a threshold-power dependence of the damage accumulation rate o n / h ~ C i  and, incidentally, 
the corresponding equation of the damage accumulation in Eq. (3.4). The choice between the models 
descnl~,d by (3.4), (3.6) and (3.7) can only be made by comparing the results of a prediction of the 
crack growth with experimental data. 

4. To calculate the growth of fatigue cracks we will now turn to relations (1.5) and (1.6). During the 
incubation stage, when microdamage accumulation occurs at the tip of a fixed crack, we have the relation 
G < F when a = a0 = const. Equation G = F is first achieved for a certain N = N.. The further behaviour 
of the crack depends on the distribution of the microdamage in the tip zone and also on the extent to 
which the plastic opening of the crack affects the resistance to its growth. 

Two typical situations are shown in Fig. 5, where we illustrate how the generalized forces G and V 
change during the crack growth. Here the curves of Fs correspond to a monotonic increase in the load 
and the dimensions of the crack. They are essentially R-curves [3-5]. Point 1 on the graphs corresponds 
to the beginning of loading, point 2 corresponds to the onset of the crack growth when N = N., and 
point 3 corresponds to the final fracture when N = N... Figure 5 was drawn on the assumption that 
the microdamage at the crack tip decreases rapidly with depth into the tip zone, so that the crack growth 
occurs continuously when both conditions from (1.5) are satisfied. Figure 5('o) illustrates the intermittent 
growth of the crack. Due to microdamage, which occupies a region with dimensions at the order of ~ ,  
the state of the system when the equality G = F is first attained is unstable: dG/da > dF/da. An  increase 
in dimensions of the crack by Aa occurs, which can be found from condition (1.6). In the new position 
of the tip of the crack G = F, and the process is repeated once more. A typical situation is that, when 
there is microdamage described by Eq. (3.4), an intermittent growth of the crack occurs initially and, 
possibly, recommences before the final fracture due to a rapid increase in the dimensions ~. and ~ .  If 
we take the model in the form (3.7), the crack growth becomes continuous. 

For a numerical analysis it is best to take samples of the dimensions of the crack a in equal fairly small 
steps ~a. The calculation algorithm reduces to calculating the values of ¥ corresponding to achieving 
the equality G = F for the closest value a +/~a, and integrating Eq. (3.4) before the instant when the 
equality (3.2) is achieved. This gives the required number of cycles, after which the procedure is repeated. 

(a) G (b) G 
G,r I ~ '  ~'p r, 

ro ro 

0 a 0 a ** a 0 a 0 a ** a 
Fig. 5. 
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Calculations were carried out for the following numerical data: E = 200 GPa, o0 = 500 MPa, 
of  = 5 GPa, A o~  = 250 GPa, ct = 1 and ~ia - , . .  The initial value of the specific fracture work was taken 
as F0 = 18 kJ /m,  which, within the framework of linear fracture mechanics, corresponds to a fracture 
toughness Kxc = 60 MPa m 1/2. The calculations showed that at the beginning the crack propagates 
intermittently. A stage of continuous growth then begins at a somewhat slower rate. The velocity of 
the crack propagation then increases, approximately as a power law, with a considerable acceleration 
as it approaches the final fracture. These features agree with experimental data. They can be explained 
qualitatively by considering the distribution of the microdamage measure to (x, N) at the tip of the moving 
crack (Fig. 6). Figure 6 was" drawn for a0 = 1 mm, a max = 200 MPa, and o mi~ = 0. Curves 1-4 relate 
to the initial stage of growth. Curve 1 corresponds to N -- N. = 42 while curves 2-4 correspond to n 
= 65, 97, and 251 cycles. Curves 5 (N = 1000) and 6 (N = 1170) correspond to a later stage of crack 
growth. The projection of the left points of these curves onto the horizontal axis indicates the current 
dimensions of the crack a(N). Until the crack begins to grow, i.e. N < N., considerable microdamage 
has accumulated in its tip zone (curve 1). This explains the intermittent growth of the crack at a relatively 
high rate. Later, due to the effect of the microdamage, accumulated in previous stages of the loading 
and in the far field, the growth becomes continuous. In the concluding stage the level of microdamage 
at the tip is reduced considerably. 

The final result is of the greatest practical interest. This is represented by the diagram of the fatigue 
crack growth rate in which we have plotted the range of load parameters along the abscissa axis on a 
logarithmic scale, and the growth rate daMN along the ordinate axis (also on a logarithmic scale). In 
Figs 7-9 we have chosen as the load parameters the range of the stress intensity factor AKx, the range 
of the J-integral A/, and the range of the generalized force AG, respectively. The graphs were drawn 
for the same data as above with the exception of the exponent in Eq. (3.4): it was taken to be m = 4. 
Curves 1-3 were drawn for the maximum stress of the cycle a max = 150, 200 and 300 MPa. 

The form of the curves corresponds to the qualitative considerations presented above. The effect of 
the anomalous behaviour of the curves in the initial parts is noteworthy, and also their divergence as 
the crack continues to grow. This divergence is particularly great in Fig. 7, where we have taken the 
range of the stress intensity factor AKI as the load parameter, as is usually done. On changing from AKz 
to AJ (Fig. 8), the divergence between the curves decreases, although it still remains considerable. The 
closest arrangement of the curves is observed in Fig. 9. This serves as an indirect confirmation of the 
consistency of the proposed model. We can find another argument in favour of this model by considering 
the slope of the curves at their middle part. In Fig. 7 the slope factors (in double logarithmic coordinates) 
are equal to two (in Figs 8 and 9 they are close to unity). This agrees on the whole with experimental 
data on low-cycle fatigue, in particular, with the so-called Coffin-Manson equation and the related semi- 
empirical equations. The fact that these angular coefficients are independent of the exponent m in the 
equation for the accumulation of microdamage (3.4) is important. This is clearly shown on the diagrams 
of the growth of fatigue cracks (Fig. 10). For all three curves the slopes in the middle part of the diagram 
are close to two, although the crack growth rate has changed by two orders of magnitude. The result 
obtained can serve as a basis for choosing between the two models of the microdamage accumulation 
described by Eqs (3.4) and (3.7). In the second case the crack growth rate is extremely sensitive to the 
choice of m. 
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5. Certain qualitative conclusions which relate to the crack growth at the middle and concluding stages 
can be obtained using the quasistationary approximation [2]. We will represent the microdamage measure 
co(x, N) in the form 

to = ton/+ cog (5.1) 

Here ¢t~/(x, N) is the measure of mierodamage accumulated in the near field, or more accurately, in 
the internal, tip zone. with a < [x[ <~ a + ~ .  The measure. ¢t~x. N) includes mierodamage, in the far 
field, Le. that which was accumulated before a parUcle of material enters the up zone. 

Suppose the dimensions of the tip zone ~ are fairly small compared with the increment in the 
dimensions of the crack a - a0 considered. Then, the crack growth rate can be assumed to be constant 
within the section AN, during which the crack tip travels a distance ~ .  Then 

~v  = Xp(da / dN) -~ (5.2) 

In the limits a < [x l ~ a + ~ the range of the tensile stresses is 2o0. Hence, using F_x]. (3.4), we 
obtain 
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o~nf = ~p (da / dN) -I [(2o 0 - Aoth ) / o f  ]m (5.3) 

Substituting (3.5), (3.2), (3.3), (5.1) and (5.3) into the condition G = F we obtain the following 
approximate equation for the crack growth rate 

da = ~,p 1 - -¢o#(N)  
dN 

(5.4) 

Here, for brevity we have put Fs = F0[1 + (5/6f)1~]. For the middle stage of the crack growth G ,~ Fs, 
tt~ff (x, N) ,~ 1. Taking into account the fact that when At~**/a0 is sufficiently small 

~,p = ~(Ao**)2a / ( 3 2 E )  (5.5) 

we obtain the growth rate da/dN proportional to the square of the stress intensity factor r ange /~I ,  
irrespective of the value of the exponent m in the initial equation (3.4). The last factor in (5.4) on the 
right-hand side describes the acceleration of the crack growth at the concluding stage. 

We will carry out similar calculations as they apply to the simplified version of Eq. (3.7) 

(5.6) 

where A8 is the range of plastic tip opening displacement within the cycle. 
For tonf and da/dNwe obtain expressions similar to (5.3) and (5.4) when [(2a0 - AOth)/O¢] ~ is replaced 

by the quantity on the right-hand side of Eq. (5.6). 
Taking (2.2) and (5.5) into account we fred that the growth rate daMN when G ,g Fs, t t~N)  ,~ 1 is 

approximately proportional to (AK0 m+2. The strong dependence of the crack growth rate on the 
exponent m shows that, of the two models of microdamage accumulation, we are inclined to choose 
the model described by F_,q. (3.4). 
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